MAXIMAL AND SUBMAXIMAL CARDIOPULMONARY RESPONSES TO WHOLE-BODY SIMULATED SWIMMING

M. Konstantaki1, I.L. Swaine1, E.M. Winter2

1Physiology of Exercise, School of P.E., Sport and Leisure, De Montfort University, Bedford, UK and 2Sports Science Research Institute, Sheffield Hallam University, Sheffield, UK

The purpose of this study was to explore the relationship between oxygen uptake and heart rate in response to whole-body simulated swimming.

Nine club swimmers (mean \pm SD; age: 20 ± 4 years, stature: 1.68 ± 11 m, mass: 63 ± 12 kg) signed an informed consent and participated in the study. All subjects performed a simulated front crawl combined arm-pulling and leg-kicking incremental exercise test to exhaustion using a swim bench and a leg-kicking ergometer. Oxygen uptake (VO_2) and heart rate (HR) were recorded at 15 s intervals and at exhaustion (VO_2peak; HR_{peak}). The HR at ventilatory threshold (VT) was determined (VT_{HR}) and the VO_2/HR relationship explored.

The mean \pm SD for VO_2peak and HR_{peak} values were 3.3 ± 0.4 L·min$^{-1}$ and 174 ± 8 b·min$^{-1}$ respectively, whereas VT_{HR} occurred at 162 ± 5 b·min$^{-1}$ at a predicted VO_2 of 2.4 ± 0.4 L·min$^{-1}$. The relationship between VO_2 and HR was shown to be linear in all subjects ($r=0.94$; $P<0.05$).

Previously published data have demonstrated linear relationships between HR/EI and VO_2/EI ($r=0.99$ and $r=0.98$ respectively; $P<0.05$) for simulated arm-pulling exercise. The peak values for simulated front-crawl arm-pulling and leg-kicking exercise were: 2.85 ± 0.26 L·min$^{-1}$, 171 ± 3 b·min$^{-1}$ and 3.1 L·min$^{-1}$, 170 ± 3 b·min$^{-1}$, respectively. Our results suggest that the VO_2 and HR responses to full-stroke simulated swimming are higher than the respective responses to arm-pulling or leg-kicking separately. This type of whole-body ergometry might be useful for assessing maximal and submaximal cardiopulmonary responses to exercise in swimmers.

Figure 1. VO_2 and HR in response to full stroke simulated swimming

REFERENCES