Expanding the universe of universal logic

Trafford, James (2014) Expanding the universe of universal logic.

View this record at http://www.research.ucreative.ac.uk/1801/
Official URL: 10.1387/theoria.11493

Abstract

In [5], Béziau provides a means by which Gentzen’s sequent calculus can be combined with the general semantic theory of bivaluations. In doing so, according to Béziau, it is possible to construe the abstract “core” of logics in general, where logical syntax and semantics are “two sides of the same coin”. The central suggestion there is that, by way of a modification of the notion of maximal consistency, it is possible to prove the soundness and completeness for any normal logic (without invoking the role of classical negation in the completeness proof). However, the reduction to bivaluation may be a side effect of the architecture of ordinary sequents, which is both overly restrictive, and entails certain expressive restrictions over the language. This paper provides an expansion of Béziau’s completeness results for logics, by showing that there is a natural extension of that line of thinking to n-sided sequent constructions. Through analogical techniques to Béziau’s construction, it is possible, in this setting, to construct abstract soundness and completeness results for n-valued logics.

Item Type: Article
Keywords: B Philosophy (General), BC Logic
Members: University for the Creative Arts
Depositing User: ULCC Admin
Date Deposited: 08 Nov 2016 12:56
Last Modified: 08 Nov 2016 12:56
URI: http://collections.crest.ac.uk/id/eprint/11023

Actions (login required)

Edit Item Edit Item